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Explicit integration usually timestep limited by numerical
stability

ẋ = −γ x , γ ∈ R+



Explicit integration usually timestep limited by numerical
stability

xn+1 − xn
h

= −γ xn



Explicit integration usually timestep limited by numerical
stability

xn = (1− h γ)n x0



Explicit integration usually timestep limited by numerical
stability

xn = (1− h γ)n x0

Numerical instability when h γ > 2



Implicit integration removes this stability barrier.

xn+1 − xn
h

= −γ xn+1



Implicit integration removes this stability barrier.

xn =
1

(1 + h γ)n
x0



Implicit integration removes this stability barrier.

xn =
1

(1 + h γ)n
x0

Stable for all (non-negative) timesteps h!



But stability does not imply large timestep accuracy!

xn+1 − xn
h

= −γ xn+1 − h4 γ5 (xn+1 − 5)

Same formal accuracy as BWD Euler for h γ � 1



But stability does not imply large timestep accuracy!

xn =
x0

(1 + h γ + h5 γ5)n
+ 5

(
h5 γ5

1 + h γ + h5 γ5

)
1− (1 + h γ + h5 γ5)−n

1− (1 + h γ + h5 γ5)−1



But stability does not imply large timestep accuracy!

xn =
x0

(1 + h γ + h5 γ5)n
+ 5

(
h5 γ5

1 + h γ + h5 γ5

)
1− (1 + h γ + h5 γ5)−n

1− (1 + h γ + h5 γ5)−1

≈ 5h4 γ4 � 1 as n→∞

When h γ � 1, reasonable large-n behavior



But stability does not imply large timestep accuracy!

xn =
x0

(1 + h γ + h5 γ5)n
+ 5

(
h5 γ5

1 + h γ + h5 γ5

)
1− (1 + h γ + h5 γ5)−n

1− (1 + h γ + h5 γ5)−1

≈ 5 as n→∞

When h γ � 1, nonsensical large-n behavior



Large timesteps: a leap of faith?



Large timesteps: a leap of faith?

How can one step over timescales without sacrificing accuracy?



This talk will suggest an answer.

(1) Identify your cts-time system’s temporal
multi-scale structure

(2) Develop a discrete-time analogue of that
structure

(3) Design implicit scheme using discrete structure
as a constraint



This talk will suggest an answer.

Why?

(1) Develop a precise picture of interplay between
short and long timescales in cts time

(2) Understand how much of that interplay is
reproducible in discrete time

(3) Use cts-time analytical methods for numerical
analysis



Part I: fast-slow maps



Fast-slow systems embody most fundamental multi-scale
structure

Definition 1: (fast-slow system)

A fast-slow system is a (possibly infinite-dimensional) ODE on
X × Y 3 (x , y) of the form

ẏ = fε(x , y)

ẋ = ε gε(x , y),

where fε(x , y), gε(x , y) are smooth in (x , y , ε) and

For each x there is a unique y = y∗0 (x) that solves f0(x , y) = 0

The linear map Dy f0(x , y∗0 (x)) : Y → Y is invertible for each
x ∈ X

x is slow variable, y is fast variable



Different limiting fast-variable phase portraits



Fast-slow structure ⇒ existence of slow manifold

Theorem 1: (existence of slow manifolds; cts-time)

For each fast-slow system there is a unique formal power series

y∗ε (x) = y∗0 (x) + ε y∗1 (x) + ε2 y∗2 (x) + . . .

such that the graph Sε = {(x , y) | y = y∗ε (x)} is an invariant
manifold to all orders in ε.

Equivalently, y = y∗ε (x) provides a formally-exact closure of
the slow-variable evolution equations,

ẋ = ε gε(x , y
∗
ε (x)).

Slow manifold reduction of the fast-slow system





Example:

The Vlasov-Poisson system

∂t f + v · ∇f + e
mF · ∇v f = 0

F = −∇φ, ∆φ = −4πe

ˆ
f d3v

The Vlasov-Darwin system

∂t f + v · ∇f +
e

m
a · ∇v f = 0

F = −∇φ− c−1∂tA

+c−1v ×∇× A

∆φ = −4πe

ˆ
f d3v − c−1∇ · ∂tA

c∇×∇× A = 4π

ˆ
v fd3v −∇∂tφ



Example:

The Vlasov-Maxwell system

∂t f + v · ∇f + e
mF · ∇v f = 0

F = E + c−1v × B
∂tB = −c∇× E

∂tE = 4π

ˆ
v f d3v − c ∇× B

Fast-slow with x = (f ,EL),
y = (B,ET ), ε = c−1

Vlasov-Poisson is 0th-order
slow manifold reduction

Vlasov-Darwin is 1st-order
slow manifold reduction

G. Miloshevich and J. W. Burby, J. Plasma Phys. (2021,

in-press)

The Vlasov-Poisson system

∂t f + v · ∇f + e
mF · ∇v f = 0

F = −∇φ, ∆φ = −4πe

ˆ
f d3v

The Vlasov-Darwin system

∂t f + v · ∇f +
e

m
a · ∇v f = 0

F = −∇φ− c−1∂tA

+c−1v ×∇× A

∆φ = −4πe

ˆ
f d3v − c−1∇ · ∂tA

c∇×∇× A = 4π

ˆ
v fd3v −∇∂tφ



Fast-slow maps = discrete-time fast-slow systems

Definition 2: (fast-slow map)

A fast-slow map on X × Y 3 (x , y) is a family of mappings

Fγ : X × Y → X × Y : (x , y) 7→ (ψγ(x , y),Ψγ(x , y))

with vector parameter γ such that

F0(x , y) = (x ,Ψ0(x , y)),

and

For each x ∈ X there is a unique y = y∗0 (x) that solves
Ψ0(x , y) = y

The linear map DyΨ0(x , y∗0 (x))− 1 : Y → Y is invertible

J. W. Burby and T. J. Klotz, Commun. Nonlinear Sci. 89: 105289 (2020)



Discrete-time fast-slow structure ⇒ discrete-time slow
manifolds

Theorem 2: (existence of slow manifolds; discrete-time)

For each fast-slow map there is a unique formal power series

y∗γ (x) = y∗0 (x) + y∗1 [γ](x) + ε2 y∗2 [γ, γ](x) + . . .

such that the graph Sγ = {(x , y) | y = y∗γ (x)} is an invariant
manifold to all orders in γ.

Equivalently, y = y∗γ (x) provides a formally-exact closure of
the slow-variable map,

x 7→ ψγ(x , y∗γ (x))

Slow manifold reduction of the fast-slow map

J. W. Burby and T. J. Klotz, Commun. Nonlinear Sci. 89: 105289 (2020)



Example 1:

Variational IMEX discretization of Vlasov-Maxwell defines
fast-slow map for ε� h� 1. Discrete-time slow manifold
recovers:

0th-order in ε: 2nd-order scheme for Vlasov-Poisson
1st-order in ε: 2nd-order scheme for for Vlasov-Darwin

ET∗
γ = −(h δ)2

c2
∆−1

1 ΠT
1

∑
a

4πe2
a

ma
I ∗1

(
I1(EL) ∗ Sxa Sxa

)
+

(h δ)2

c2
∆−1

1 ΠT
1

∑
a

4πeaI
∗
1 (∇ · [vava Sxa ]) + O(γ5)

B∗γ = (h δ)
4π

c
∆−1

2 d1

∑
a

ea I
∗
1 (va Sxa) + O(γ3)

J. W. Burby, APS-DPP Poster, (2019), http://meetings.aps.org/link/BAPS.2019.DPP.CP10.15, LA-UR-19-30654



cts-time slow manifold

ET∗
ε =

ε2

c2
∇−2ΠT

∑
σ

4πe2nσ
mσ

EL

− ε2

c2
∇−2ΠT

∑
σ

4πeσ∇ ·
ˆ

vv fσ d
3v + O(ε3)

B∗ε = −ε 4π

c
∇−2∇×

∑
σ

eσ

ˆ
v fσ d

3v + O(ε2)

Discrete-time slow manifold

ET∗
γ = −(h δ)2

c2
∆−1

1 ΠT
1

∑
a

4πe2
a

ma
I ∗1

(
I1(EL) ∗ Sxa Sxa

)
+

(h δ)2

c2
∆−1

1 ΠT
1

∑
a

4πeaI
∗
1 (∇ · [vava Sxa ]) + O(γ5)

B∗γ = (h δ)
4π

c
∆−1

2 d1

∑
a

ea I
∗
1 (va Sxa) + O(γ3)



Example 2:

Lorentz loop dynamics

Phase space loop of magnetized charged particles evolves
according to

∂t ṽ(θ, t) +
1

ε
|B(x(t))| ∂θṽ(θ, t) =

1

ε
ṽ(θ, t)× B(x̃(θ, t))

∂t x̃(θ, t) +
1

ε
|B(x(t))| ∂θx̃(θ, t) = ṽ(θ, t)





Proposition:

Phase space loop dynamics is a fast-slow system.

Theorem:

Slow manifold reduction of loop dynamics, ẋ = gε(x , y
∗
ε (x)),

describes the dynamics of a single guiding center

ẋ = ub − ε (µ0∇|B|+ b · ∇b)× b
|B|︸ ︷︷ ︸

∇B and curvature drifts

+O(ε2)

J. W. Burby, “Guiding center dynamics as motion on a formal slow manifold in loop space,” J. Math. Phys.
61:012703 (2020)



Example 2:

Implicit midpoint for Lorentz loop dynamics defines fast-slow
map for h� 2π/ωc :

discrete-time slow manifold recovers integrator for
guiding center dynamics

∇B-dominant ⇒ ccw azimutal motion

IC: (x , y , z , u,w1,w2) = (0, .3, 0, 1, 2, 0)
h = .5× 10−2 ε = 10−4

J. W. Burby, “Integrating guiding center motion in loop space,” Courant Institute Invited Talk: LA-UR-19-2276
(2019)



Example 2:

Lorentz-Pauli dynamics

The Lorentz-Pauli system is the ODE

v̇ = −µ∇|B|+ 1

ε
v × B(x)

ẋ = v

where µ > 0 is a parameter.

Proposition: (Xiao-Qin)

The Lorentz-Pauli system is fast-slow. The slow manifold reduction
recovers guiding center dynamics with magnetic moment µ.

J. Xiao and H. Qin, “Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for
guiding center dynamics,” Comp. Phys. Commun. 265:107981 (2021)



Proposition:

Boris discretization of Lorentz-Pauli defines a fast-slow map for
ε� h� 1. (δ = ε/h.)

δ(vk+1/2 − vk−1/2) =
1

2
(vk+1/2 + vk−1/2)× B(xk)

(xk − xk−1) = h vk−1/2

J. Xiao and H. Qin, “Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for
guiding center dynamics,” Comp. Phys. Commun. 265:107981 (2021)



But sometimes slow manifolds are not enough!

Xiao-Qin integrator performance in realistic fields

Tc = 3.14× 10−8. DIII-D shot 66832 at 2384 ms



Part 2: nearly-periodic maps



Nearly-periodic systems limit to periodic flows

Definition 3: (nearly-periodic system)

An ODE ż = Vε(z) is a nearly-periodic system if

Vε(z) is smooth in (z , ε)

Each trajectory of ż = V0(z) is periodic with
nowhere-vanishing angular frequency ω0(z)



Nearly-periodic systems limit to periodic flows



nearly-periodic structure ⇒ existence of U(1)-symmetry

Theorem 3: (all-orders U(1) symmetry)

Each nearly-periodic system admits a formal U(1)-symmetry.
Equivalently, there is a power series vector field
Rε = R0 + εR1 + . . . such that

R0 = V0/ω0

[Rε,Vε] = 0 to all-orders in ε

exp(2πLRε) = id

Rε is called the roto-rate. It is unique!

M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J. Math. Phys.
3: 806 (1962)



nearly-periodic structure ⇒ existence of U(1)-symmetry

Corollary: (adiabatic invariance)

If a nearly-periodic system ż = Vε(z) is also Hamiltonian, then it
admits an adiabatic invariant. Equivalently, there exists a
power-series scalar function µε = µ0 + ε µ1 + . . . such that

LVεµε = 0

to all-orders in ε.

M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J. Math. Phys.
3: 806 (1962).
J. W. Burby and J. Squire, “General formulas for adiabatic invariants in nearly periodic Hamiltonian systems,” J.
Plasma Phys. 86: 835860601 (2020).



Example:

Proper-time Lorentz force dynamics

A magnetized charged particle’s 4-position R and 4-velocity V
evolve according to

dV

dτ
= F (R)V ,

dR

dτ
= εV ,

where τ is the proper time and F is the Faraday tensor.

Proposition:

Proper-time Lorentz force dynamics is nearly periodic. The limiting
flow map is

(R,V ) 7→ (R,P‖V + [cos θ + sin θF0/ω0]P⊥ V )

where ω0 =
√
−tr(F 2

0 )/2 and θ = τω0.

J. W. Burby and E. Hirvijoki, “Normal stability of slow manifolds in nearly-periodic Hamiltonian systems,” J. Math.
Phys. (2021, submitted, arXiv:2104.02190)



Nearly-periodic maps limit to rotations along circles

Definition 4: (nearly-periodic map)

A mapping Fγ : Z → Z with vector parameter γ is a
nearly-periodic map if there is a U(1)-action Φθ : Z → Z and an
angle θ0 ∈ U(1) such that

F0 = Φθ0 .

If θ0/(2π) is rational, Fγ is resonant. Otherwise it is
non-resonant.



θ 7→ θ + θ0

θ0 = 2π(7/13)

θ0 = 2πφ



Discrete nearly-periodic structure ⇒ discrete-time U(1)
symmetry

Theorem 4: (discrete-time all-orders U(1) symmetry)

Each non-resonant nearly-periodic map Fγ admits a formal U(1)
symmetry. Equivalently, there exists a power-series vector field
Rε = R0 + R1[γ] + R2[γ, γ] + . . . such that

R0 = ∂θΦθ |θ=0

F ∗γRγ = Rγ

exp(2πLRγ ) = id



Discrete nearly-periodic structure ⇒ discrete-time U(1)
symmetry

Corollary: (discrete-time adiabatic invariance)

If a non-resonant nearly-periodic map is also Hamiltonian* then it
admits an adiabatic invariant. Equivalently, there exists a power
series scalar function µγ = µ0 + µ1[γ] + µ2[γ, γ] + . . . such that

µγ(Fγ(z))− µγ(z) = 0

to all orders in γ for each z ∈ Z .



Part III: Application to symplectic
integration



Symplectic integration preserves the geometry of phase
space for non-dissipative systems

ṗ = −∂qH, q̇ = ∂pH

Phase space geometry =
symplectic 2-form

dqk+1 ∧ dpk+1 = dqk ∧ dpk



Symplectic integration preserves the geometry of phase
space for non-dissipative systems

Benefits of symplectic integration

numerical stability for many timesteps without introducing
dissipation

Noether’s theorem in discrete time

reveals useful mechanisms that can be ported into
non-symplectic schemes

e.g. Villasenor-Buneman current deposition for PIC
emerges naturally from symplectic PIC.
This provides easy way to generalize V-B to irregular
meshes, higher-order finite elements, non-trivial particle
shape functions, even drift kinetics



Canonical symplectic integration is routine

ṗ = −∂qH, q̇ = ∂pH

Famous example: Leapfrog

H(q, p) =
1

2
|p|2 + V (q)

qk+1 = qk + h pk+1/2

pk+3/2 = qk+1/2 − h ∂qV (qk+1)

Symplectic integration methods can also be used to build
symplectic neural networks

J. W. Burby, Q. Tang, R. Maulik, “Fast neural Poincaré maps for toroidal magnetic fields,” Plasma. Phys. Control.
Fusion 63: 024001 (2021)



But non-canonical symplectic integration is notoriously
difficult

Non-canonical Hamiltonian systems

ż iωij(z) = ∂jH(z), ωij = −ωji , ∂iωjk + ∂jωki + ∂kωij = 0

canonical symplectic property

dqk+1 ∧ dpk+1

= dqk ∧ dpk

non-canonical symplectic
property

ωij(zk+1)dz ik+1 ∧ dz jk+1

= ωij(zk)dz ik ∧ dz jk



But non-canonical symplectic integration is notoriously
difficult

Techniques for building
canonical symplectic
schemes double dimension
of phase space when
applied to non-canonical
systems

BIG PROBLEM: extra
dimensions ⇒ numerical
instabilities generically

OPEN QUESTION: Can
these instabilities be
eliminated?



But non-canonical symplectic integration is notoriously
difficult

Examples:

Guiding center dynamics

(collisionles) Vlasov-Maxwell

various forms of MHD

MANY MORE!



These instabilities = drift away from discrete-time slow
manifold

Example: “non-canonical pendulum”

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



These instabilities = drift away from discrete-time slow
manifold

Example: “non-canonical pendulum”

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



Instabilities can be eliminated using nearly-periodic maps!

Theorem:

The generating function

S(q, q) = −~H + ~ δ 〈XH , z − z〉 − 1

2
~2 δ 〈XH ,XH〉

+

ˆ z

z
ϑ− 1

4

(
sin θ0

1− cos θ0

)
〈z − z − ~XH , z − z − ~XH〉

defines a Hamiltonian nearly-periodic map on (z , ż)-space. On the
zero level set µγ = 0, the map induces a non-canonical symplectic
integrator for the non-canonical Hamiltonian system ż = XH(z).
Normal instabilities are impossible by discrete-time adiabatic
invariance.



Instabilities can be eliminated using nearly-periodic maps!



Thank you!
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Phys. Control. Fusion 63: 024001 (2020)

6 J. W. Burby and T. J. Klotz, “Slow manifold reduction for plasma science,” Commun. Nonlinear Sci.
Numer. Simul. 89: 105289 (2020)

7 J. W. Burby and D. E. Ruiz, “Variational nonlinear WKB in the Eulerian frame,” J. Math. Phys. 61:
053101 (2020)

8 J. W. Burby, “Guiding center dynamics as motion on a formal slow manifold in loop space,” J. Math.
Phys. 61: 012703 (2020)

9 C. L. Ellison, J. M. Finn, J. W. Burby, M. Kraus, H. Qin, W. M. Tang , “Degenerate variational
integrators for magnetic field line flow and guiding center trajectories,” Phys. Plasmas 25:052502 (2018)

10 J. W. Burby, APS-DPP Poster, http://meetings.aps.org/link/BAPS.2019.DPP.CP10.15,
LA-UR-19-30654, (2019)

11 J. W. Burby, “Integrating guiding center motion in loop space,” Courant Institute Invited Talk:
LA-UR-19-2276 (2019)

12 J. W. Burby and W. Sengupta, “Hamiltonian structure of the guiding center plasma model,” Phys.
Plasmas 25:020703 (2018)

13 J. W. Burby, “Magnetohydrodynamic motion of a two-fluid plasma,” Phys. Plasmas 24:082104 (2017)

14 M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J.
Math. Phys. 3: 806 (1962)


